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Abstract

An analytical method has been developed for the inverse heat conduction problem, when the temperatures are
known at two positions in a ®nite body or at one position in a semi-in®nite body. On the basis of these known

temperatures, a closed form solution is determined for the transient temperatures beyond the two positions by using
Laplace transform technique. This method ®rst approximates the temperature data with a half polynomial power
series of time. The resultant expression for an objective temperature or heat ¯ux is explicitly obtained in the form of

power series of time. Numerical results for some representative problems show that the surface temperature and
heat ¯ux can be predicted well by the method. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

A procedure to solve inverse heat transfer problem
(IHTP) is very important in determining unknown sur-
face temperature and heat ¯ux from known values in
the body, which are usually measured as a function

of space and time. Especially, under severe surface
conditions such as re-entry of space vehicle and acci-
dents involving coolant breaks in the plasma-facing

components, a direct measurement of the heat ¯ux
or surface temperature change on the surface is
almost impossible, so that the prediction of these

values cannot help, depending on the solution of
IHTP. In addition, several studies about IHTP have
been carried out to predict the transient surface con-
ditions during quenching of a hot body. However,

the exact solution for IHTP is mathematically veri-
®ed that does not exist within a certain time depend-
ing on the position at which the known value is

provided. Therefore, recent studies of IHTP have

been numerically treated and extended to multiple

dimensions with the help of computing architechture

and improvement in computer capacities. Several nu-

merical and theoretical approaches to IHTP are sum-

marized elsewhere [1,2].

Nevertheless, a theoretical method, for example,

using Laplace transformation, is still interesting

because it not only explicitly gives the inverse solution

but also greatly reduces the computing time. The dis-

advantage of this approach may be limited only to the

cases where the con®gurations involved are rather

simple such as rectangular and cylindrical shapes, and

the known boundary conditions are not complicated.

As an example of analytical method of one-dimen-

sional IHTP, a procedure using an exact solution by

Buggraf [3] and a method using Duhamel solution or

Laplace [4±7] transformation are widely used.

Sparrow et al. [4] succeeded in deriving the

inverse solution for one-dimensional heat conduction

by using a skillfully introduced arbitrary function.

The values of this function are discretely given with
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time, since these values are calculated from the
known values measured, which are usually given as
a function of time. During the calculation of these
values, a special care is needed to prevent the oscil-

lations at successive integrals of time. Non-dimen-
sional minimum interval of time, Dt, was
recommended to be 0.01. In addition to the exist-

ence of the minimum interval, good agreement
between the given and predicted surface tempera-
tures for a linear increase in the surface temperature

was obtained, although what level of accuracy was
used for known values is not described.
Shoji [5] started from the same inverse solution in

a subsidiary form as Sparrow et al. [4] and
obtained two di�erent types of solutions as a func-
tion of time in two di�erent ways. Shoji [5] veri®ed
that one of the two solutions corresponds to the

solution proposed by Buggraf [3], and the other to
one obtained by Sparrow. Shoji [5] employed the
data including uncertainties in the known values to

evaluate the predictive accuracy of the inverse sol-
ution. He numerically calculated the inverse solution
using a ®nite di�erence method and showed a re-

lationship between the accuracy of predicted values
and the level of the uncertainties included and also
between minimum predictive interval and the level

of the uncertainties. Shoji [5] ®nally pointed out
that Laplace transformation is promising in treating
one dimensional IHTP.
Imber [6] employed an approximate function

expressed by a polynomial function to estimate the
known temperature change with time in place of the
discrete values which were used by Buggraf [3], Spar-

row et al. [4] and Shoji [5], and applied it to the sub-
sidiary equation to get the inverse solution explicitly.
In his method, a relationship between temperatures

measured at two di�erent points is assumed to avoid

divergence of the inverse solution. His solution does
not need any iterative calculation.
Imber [7], furthermore, extended his procedure,

using Laplace transformation, for one-dimensional

IHTP to one for two- and three-dimensional IHTPs,
since it is relatively simple to extend two- and
three-dimensional IHTPs for the cases where the

geometrical con®gurations involved are not compli-
cated.
As for numerical methods, Heieh and Su [8], Bell

[9] and Lithouhi and Beck [10] solved two-dimen-
sional IHTP using ®nite-di�erence method, while
Shoji and Ono [11] used on boundary element

method. Frankel et al. [12] ®rst approximated the
temperature change at a point using polynominal
series of Chevise�, and then gave the solution of
IHTP by determining each coe�cient of polynom-

inal series, in order to minimize a weighted residual
in the governing equation. Chen and Chang [13]
developed a little di�erent method for one-dimen-

sional IHTP by combining Laplace transformation
and the Galerkin weighted residual process. This
method needs several measuring points in a solid at

which the known values can be provided although
the number of measuring points is two for a ®nite
body and one for the in®nite body. Chen and

Chang [13] showed good agreement between esti-
mates and the exact solution for non-dimensional
times of t � 1 and 5, through it is not mentioned
that what kind of uncertainties are merged into the

temperatures used. From the viewpoint that the
inverse solution for short time may be generally
needed during a transient heat conduction, non-

dimensional times of t � 1 and 5 seem to be too
large, because heat transfer process may reach close
to steady state, corresponding to a gradual change

in the temperature with time.

Nomenclature

a thermal di�usivity
f1�t�, f2�t� functions of non-dimensional tempera-

ture at points x1 and x2, respectively
k rate of temperature rise
L characteristic length
min�y� minimum of signi®cant number or a

minimum division of measuring equip-
ment

N degree of approximate polynomial

Nsf order of signi®cant number
q heat ¯ux
s Laplace operator (= p 2)
t time

T temperature
x x-coordinate
y�x, t� non-dimensional temperature

l heat conductivity
F�x, t� non-dimensional heat ¯ux
�y�x, s� subsidiary value of y
�F�x, s� subsidiary value of F
x non-dimensional distance

�� X=L, x1 < x2)
t non-dimensional time �� at=L 2)
t1 minimum predictive time
t�i non-dimensional time lag

�erfc�xi=2
�����
t�i

p � � min�y�)
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The present study also has started with the same
subsidiary solution as governing equation for one-

dimensional heat conduction as explained by Sparrow
et al. [4], Shoji [5], Imber [6] and Chen and Chang [13].
The main di�erence from the former researches is to

employ equation expressed by a half polynomial series
of time to approximate the known values. As a result,
the inverse solution can be obtained explicitly, so that

no iterative calculation is required and the calculation
of the solution becomes very quick. The minimum pre-
dictive time and the stability of the solution and the

uncertainty in predicted values will be discussed using
the known temperatures including uncertainties.

2. Analysis of one-dimensional heat conduction

One-dimensional heat conduction equation with con-

stant properties can be written in a non-dimensional
form as:

@y
@t
� @ 2y

@x 2
�1�

A subsidiary form after Laplace transformation can be
expressed for an initial condition of y � 0, which does
not lose any generality for a constant initial tempera-

ture, becomes

d 2 �y

dx 2
ÿ p 2 �y � 0 �2�

The general solution of Eq. (2) can be easily given as:

�y�x, s� � A e px � B eÿpx �3�
where p 2 � s, and s is Laplace's operator and A and B
are integral constants subject to surface conditions.

2.1. Solution for ®nite plate

In the case of IHTP for a ®nite plate, two known
temperatures in the plate are necessary at least to close
these equations. Therefore, let the two temperatures at

two di�erent points be:

y�xn, t� � fn�t� at x � xn, n � 1, 2 �4a�
and then its subsidiary form becomes:

y�xn, s� � �fn�s� at x � xn, n � 1, 2 �4b�
where, 0 < x1 < x2:
By substituting Eq. (4b) in Eq. (3), the two integral

constants A and B in Eq. (3) can be determined and
then a ®nal solution for the temperaturet any point
becomes:

�y�x, s� �
�f1�s� sinh

�
p�x2 ÿ x�	� �f2�s� sinh

�
p�xÿ x1 �

	
sinh

�
p�x2 ÿ x1 �

	
�5�

and the solution for the heat ¯ux F�� q=�lT0=L� �
ÿ@y=@x� is also given as:

�F�x, s� � p
�f1�s�cosh

�
p�x2 ÿ x�	ÿ �f2�s�cosh

�
p�xÿ x1 �

	
sinh

�
p�x2 ÿ x1 �

	
�6�

The objective in the IHTP, in general, is to predict the
unknown values in the region not included in,
x1RxRx2, especially to determine the surface con-

ditions such as surface temperature and surface heat
¯ux. Therefore, let x � 0 in Eqs. (5) and (6), we can
express the surface temperature and surface heat ¯ux

in a subsidiary form as:

�yw�s� �
�f1�s� sinh�px2 � ÿ �f2�s� sinh�px1 �

sinh
�
p�x2 ÿ x1 �

	 �7�

�Fw�s� � p
�f1�s� cosh�px2 � ÿ �f2�s� cosh�px1 �

sinh
�
p�x2 ÿ x1 �

	 �8�

The actual surface conditions can be obtained by
executing inverse Laplace transformation de®ned by
the following integral.

F�x, t� � 1

2pi

�c�i1
cÿi1

est �F�x, s� ds �9�

2.2. Approximate equation for temperatures at a

measuring point

In order to execute Eq. (9), we ®rst have to give two

known functions, �fn�s�, n � 1, 2, included in �y �w�s� and
�F �w�s� of Eqs. (7) and (8) explicitly, which are pre-
viously determined from a temperature change

measured at a point. Therefore, we can approximate
the temperature change at the point with a half poly-
nomial series of time given as:

f �1�n �t� �
XN
k�0

a
�1�
k, nt

k
2 , n � 1, 2 �10a�

f �2�n �t� �
XN
k�1

a�2�k, nt
k
2 , n � 1, 2 �10b�

f �3�n �t� �
XN
k�0

a
�3�
k, n

ÿ
tÿ t�n

�k
2 , n � 1, 2 �10c�
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where coe�cients a�i �k, n can be determined using least

mean square method from the measured temperature
and N gives the degree of the polynomial series.
Three di�erent forms as shown in Eqs. (10a)±(10c),

incidentally may be possible as an approximate func-
tion; the ®rst one does not require any constraint, the
second one satis®es an initial condition of fn�0� � 0
and the third one takes into account a time lag, t�n,
which it takes for a temperature to be monitored at
the measuring point. This time lag can be determined
as erfc�xn=2 �����

t�n
p � � min�y�:

The di�erences in the three equations may be worth
mentioning. We notice that the three equations are
identical in a basic form, except for a�2�0, n � 0 in Eq.

(10b) and t�n 6�0 in Eq. (10c). Therefore, we may
express Eq. (10c) only after this and omit superscript
in the coe�cients to avoid a complexity. In addition to

this, new coe�cients, bk; i � ak; iG�k2 � 1�, i � 1, 2, are
introduced for convenience by using Gamma function.
Consequently, the subsidiary form of Eq. (10c)
becomes as:

�fn�s� � est
�
n

XN
k�0

bk, n=s

�
k
2�1

�
, n � 1, 2 �11�

It would be necessary to say why the half polynomial
series for time as shown in Eq. (10) is adopted instead
of a polynomial series for time as a functional form

approximating the temperature change at the point.
The reason is that a general solution for one-dimen-
sional heat conduction is provided in a functional

form of T � f �x= ����
at
p �:

2.3. Procedure to determine coe�cients

The coe�cients of ak, n are greatly subject to the sig-
ni®cant digits of the data or precision of measured
values. We can consider two di�erent cases: one is cut-

o� of values calculated from the exact solution at a
certain signi®cant digit, namely y�xn, t� � Int�yexact�xn,
t� � 10Nsf �=10Nsf (Nsf means the level of the signi®cant
digits) and the other is to superpose with a certain dis-

turbance on the exact solution, namely y�xn,
t� � yexact�xn, t� � 0:005e�m � 0, s � 1� (m and s are
average and standard deviation for a value of e� on the

exact value, since the level of signi®cant digits of two
or three would be enough for the case of a temperature
measured by a thermocouple. y�xn, t� � yexact�xn,
t� � 0:005e�m � 0, s � 1� just corresponds to two sig-
ni®cant digits.
Fig. 1 shows a change in temperature measured at a

point with time and the corresponding curves given by
Eqs. (10a)±(10c) with di�erent orders of N under the
condition that the surface temperatures at both ends
are suddenly raised from y � 0 to y�0,t� � y�1,t� � 1:
Fig. 1 shows that Eqs. (10a)±(10c) are improved

with an increase in N, but the improvement would be
saturated around N = 5±7 beyond which the improve-

ment is not accepted greatly. Therefore, the order of
approximate equation can be considered to be N = 5±
7. The accurate level of approximation becomes the

same for each equation with N = 5±7. There is little
di�erence among Eqs. (10a)±(10c) in approximating
the temperature measured when employing N = 5±7.
Comparing the accuracy of the values predicted by

using either cut-o� data or disturbed data with the
same signi®cant values, one notices that the disturbed
data give worse approximation though ®gure to show

it is omitted here. Since in general, the worse approxi-
mation would result in a wor inverse solution, accu-
racy of the inverse solution will be discussed using the

worse approximation obtained from the disturbed
data, namely y�xn, t� � yexact�xn, t� � 0:005e�m � 0,
s � 1�:

Fig. 1. Approximate function for temperature change

measured at a point.
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2.4. Inverse Laplace transformation and characteristics
of the solution

Substituting Eq. (11) into Eqs. (7) and (8), and then
into Eq. (9), we get

yw�t� � 1

2pi

�c�i1
cÿi1

est

est
�
2

XN
k�0

bk, 1=s

�
k
2�1

�
sinh�px2 �

sinh
�
p�x2 ÿ x1 �

	 ds

ÿ 1

2pi

�c�i1
cÿi1

est

est
�
1

XN
k�0

bk, 2=s

�
k
2�1

�
sinh�px1 �

sinh
�
p�x2 ÿ x1 �

	 ds

�12�

Fw�t� � 1

2pi

�c�i1
cÿi1

estp

est
�
2

XN
k�0

bk, 1=s

�
k
2�1

�
cosh�px2 �

sinh
�
p�x2 ÿ x1 �

	 ds

ÿ 1

2pi

�c�i1
cÿi1

estp

est
�
1

XN
k�0

bk, 2=s

�
k
2�1

�
cosh�px1 �

sinh
�
p�x2 ÿ x1 �

	 ds

�13�

Since the integration of Eqs. (12) and (13) can be given
by the sum of the residues of the integrands at its

poles within the contour shown in Eqs. (12) and (13),
one has to look for the poles and then calculate resi-
dues to obtain the exact inverse solution. We would

face some di�culty in calculating the residues; if the
exponet of s becomes even number, then the poles are
easily found to give the residues, while if the exponent
becomes odd number, then there is a branch at s � 0,

consequently the solution can not be expressed by any
elementary function but by a series function [15], only.
As for the characteristics of the solutions, inciden-

tally, these are found to be split into two parts; one is
a group composed of the residue only at the pole of
s � 0, and the other consists of the residues at s 6�0:
The basic functional form for the residues at s 6�0 can
be expressed as exp�ÿn 2t�=nk �n, kr1�, which are
quickly decreasing with increasing t, which in terns
corresponds to decreasing s, and higher order of n and

k. Inversely, these values hardly converge with decreas-
ing t, namely large values of s and are strongly subject
to uncertainties included in the value measured. The

fact that the integration of Eqs. (12) and (13) does not
converge for a large value of s, is mathematically veri-
®ed ([2], Chapter 1). In other words, there is a limiting

time beyond which these integrals can be converged to
give the surface temperature and surface heat ¯ux.
Therefore, we choose an easier way rather executing

the exact one directly, that is, we ®rst expand the inte-
grants in Eqs. (12) and (13) around s � 0 since the

measured temperature is expressed by a half poly-
nomial function of s, and then conduct the integration.
As a result, we can obtain the following solutions for

the surface temperature and heat ¯ux, explicitly:

yw�t� �
XN
j�ÿ1

Cj, 21

ÿ
tÿ t�2

� j
2 =G

�
j

2
� 1

�

ÿ
XN
j�ÿ1

Cj, 12

ÿ
tÿ t�1

� j
2 =G

�
j

2
� 1

�
�14�

Fw�t� �
XN
j�ÿ1

Dj, 21

ÿ
tÿ t�2

� j
2 =G

�
j

2
� 1

�

ÿ
XN
j�ÿ1

Dj, 12

ÿ
tÿ t�1

� j
2 =G

�
j

2
� 1

�
�15�

Each coe�cient in Eqs. (14) and (15) and the deri-
vation are summarized in the Appendix A.

2.5. Solution for semi-in®nite body

A general solution for semi-in®nite body can be
easily obtained by letting A � 0 in Eq. (3). The tem-

perature change needed becomes only one measure at a
point. Provided that the temperature change at x � x1
can be approximated by Eq. (10) with a time lag, the

solutions for the surface temperature and the surface
heat ¯ux become, respectively as:

yw�t� � 1

2pi

�c�i1
cÿi1

es�tÿt�1 �e px1
XN
k�0

bk, 1=s

�
k
2�1

�
ds �16�

Fw�t� � 1

2pi

�c�i1
cÿi1

es�tÿt�1 �p e px1
XN
k�0

bk, 1=s

�
k
2�1

�
ds �17�

The same procedure as the ®nite plate gives the inverse
solutions for semi-in®nite body as:

yw�t� �
XN
j�ÿ1

Ej

ÿ
tÿ t�1

� j
2 =G

�
j

2
� 1

�
�18�

Fw�t� �
XN
j�ÿ1

Gj

ÿ
tÿ t�1

� j
2 =G

�
j

2
� 1

�
�19�
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3. Inverse solution and representative problems

3.1. Method for calculation

The way to solve representative problems becomes:

1. Determine each coe�cient of ai, n (or bi, n� in Eq.
(10), calculated from the temperature measured at
the point x1 or x2, for example, by the least mean

square method.
2. Expand integrants in Eqs. (12) and (13) around s �

0 in a series in which the coe�cients are summar-

ized in the Appendix A.
3. Follow the integration given by Eqs. (12) and (13)

after some multiplication of coe�cients, resulting
into the ®nal forms for the surface temperature and

heat ¯ux given by either Eqs. (14) and (15) for the
®nite body or by Eqs. (18) and (19) for the semi-in-
®nite body.

3.2. Representative problems

Inverse solutions will be treated for a combination

of an initial temperature of y � 0 and the ®rst kind of
boundary listed in Table 1, whose solutions are given
in [14] or can be derived from it.

3.3. Inverse solution calculated for case 1

Fig. 2 shows a comparison between the exact value

for case 1 and the corresponding values estimated by

using three di�erent types of approximate Eqs. (10a)±

(10c). The value of N in Fig. 2 gives the order of ap-

proximate equation and the values of x1 and x2 corre-

spond to the position of the measuring point. The

values of y�xn, t� � yexact�xn, t� � 0:005e are employed

as the values measured.

Fig. 2 shows that the estimated values are improved,

approaching to the exact solution with an increase in

the value of N. In addition, the values estimated by

Eq. (10c), from Fig. 2, are found to be in good agree-

ment with the exact one compared with the values

from Eqs. (10a) and (10b). It may be worth mention-

ing that the improvement of solution is not expected

beyond N � 7 and a suitable order of approximate

equation seems in the range 5±7.

Table 1

Boundary condition and exact solution (initial condition

y � 0 for all cases)

Boundary condition �0 < t) Parameters

Finite body �0RxR1)

Case 1 y � 1; x � 0, 1 y � T=T0

F � qL=lT0

Case 2 y � t; x � 0, 1 y � aT0=kL2
F � aq=lkT0L

Case 3 y � t; 0 < t < 1, x � 0, 1 y � aT=kT0L
2

y � 2ÿ t; 1 < t < 2 F � aq=lkT0L

Semi-in®nite body �0Rx)
Case 4 y � 1; x � 0 y � T=T0

F � qL=lT0

Case 5 y � t; x � 0 y � aT=kT0L
2

F � aq=lkT0L

Case 6 y � t; 0 < t < 1, x � 0 y � aT=kT0L
2

y � 2ÿ t; 1 < t < 2 F � aq=lkT0L

Fig. 2. Estimated surface temperature.
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4. Evaluation of estimated value

4.1. Minimum predictive time

It is mathematically proved [2] that no inverse sol-
ution exists at t � 0 and the solution can converge

beyond a limiting time. Therefore, a minimum predic-
tive time is an important factor in evaluating the
inverse solution. One may adopt the minimum predic-
tive time, t1 at which Eq. (14) is ®rst satis®ed within a

relative di�erence of 0.01 between the exact and the
estimated values and from which Eqs. (14) and (15)
are validated.

Table 2 shows the minimum predictive time for Eqs.
(10a)±(10c) against the value of N. In Table 2, the
minimum predictive times for other cases are also

listed that will be discussed later.
Table 2 shows that the best minimum time can be

obtained by using Eq. (10c) and this time is indepen-

dent of N, while for the other two equations, Eqs.
(10a) and (10b), the minimum predictive time is
improved with an increase in the value of N and ®nally
reaches the same level as for Eq. (10c).

4.2. Standard deviation of inverse solution

In order to evaluate the inverse solution, we may
introduce standard deviation as:

s �
��������������������������������������������������������������������������������

1

�t2 ÿ t1 �
�t2
t1

ÿ
yw, exact�t� ÿ yw, cal�t�

� 2
dt

s

where t2 is de®ned as the time when the measurement

is ended for the semi-in®nite body, while for the ®nite
body, 90% of the full time t2 is employed to avoid the
e�ect of the ending time on the estimated temperature.

Fig. 3 shows the standard deviation between the
exact solution of yw, exact � 1 and the values estimated
for the case 1 plotted against the order of N. It is
found from Fig. 3 that the inverse solution using Eq.

(10c) predicts the exact values at a good precision at a
small number of N and the minimum deviation of s �
0:003 appears at N � 6 beyond which the accuracy of

prediction is inversely not expected to improve any
more. Taking into account the fact that the deviation
in prediction reaches the same level as deviation of ap-

proximate equation of Eq. (10), we can not expect
more improvement in this method.

Table 2

Minimum predictive time of inverse solution

Finite body Semi-in®nite body

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

N Eq. (10a) Eq. (10b) Eq. (10c) Eq. (10c)

3 0.0410 0.0421 0.0051 0.0057 0.2156 0.0104 0.0300 0.0365

4 0.0212 0.0213 0.0051 0.0057 0.2070 0.0104 0.0296 0.0368

5 0.0132 0.0132 0.0052 0.0056 0.0783 0.0104 0.0294 0.0208

6 0.0090 0.0090 0.0052 0.0047 0.0162 0.0105 0.0256 0.0208

7 0.0074 0.0074 0.0052 0.0076 0.0319 0.0100 0.0050 0.0208

8 0.0053 0.0053 0.0052 0.0057 0.0155 0.0103 0.0371 0.0208

9 0.0050 0.0050 0.0013 0.0203 0.0054 0.0103 0.0390 0.0208

Fig. 3. Standard deviation for each equation. Fig. 4. E�ect of position of measurement.
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4.3. Recommended approximate equation

There are three di�erent equations as given by Eqs.

(10a)±(10c) in approximating the temperature change
at the measuring point. Taking into account both stan-
dard deviation and the minimum predictive time, one
can recommend Eq. (10c) among three equations and

then the values of N � 5 or 6 may be thought to be
enough.

4.4. E�ect of position of measuring temperature

Fig. 4 shows the e�ect of position of temperature

measurement on the inverse solution when Eq. (10c)
with N = 5 is used. The position of x2 � 0:5 in Fig. 4
corresponds to the farthest point from the surface in a
®nite body.

Fig. 4 shows that the inverse solutions for x1 � 0:05
and 0.1 are in good agreement with the exact value
while the minimum predictive time is slightly deterio-

rated, but for x1y0:2, both the solutions and the time
are not recommended because of a large deviation and
a delayed time. Consequently, for any combination of

x1Y0:1 and any value of x2, the inverse solution
obtained may become available.

4.5. Prediction of surface heat ¯ux

Fig. 5 shows a comparison of the surface heat ¯ux
calculated from Eq. (15) using Eq. (10c) recommended

here and the exact value in the case 1. It is found from
Fig. 5 that the heat ¯ux can be well predicted when
using N = 5 and 7.

5. Calculation for other cases

The method, using Eq. (10c), is applied to ®ve other
cases listed in Table 1 in order to check its applica-
bility. The results for each case are shown in Figs. 6±8

(The results for cases 3 and 5 are omitted here, because
it is almost the same as that for cases 2 and 6.) In ad-
dition to this, the standard deviations for each case are

also calculated as listed in Table 3.
Figs. 6±8 and Table 3 show that the present method

can be considered to be applicable to the other cases

except for the cases 3 and 6. The reason why the pre-
cision level for the cases 3 and 6 is inferior to that for
the other cases, is that of its temperature change, that
is the ®rst derivative of the temperature becomes dis-

continuous at t � 1: In other words, its sharp disconti-
nuity makes a sharp change in the surface temperature
decay at a measuring point. As the result, the esti-

mated values largely deviate from the exact value at
this point, as shown in Fig. 8. From the engineering
point of view, this method may be promising and

powerful as one of the IHTP solutions, since most of
the cases are actually subject to a continuous tempera-
ture change.

Fig. 5. Estimation of heat ¯ux in case 1.

Fig. 6. Comparison of solution for case 2.

Fig. 7. Comparison of solution for case 4.

Fig. 8. Comparison of solution for case 6.
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6. Comparison of existing method using Laplace

transformation

Shoji [5] expanded functions of sinh and cosh in

Eqs. (7) and (8) around s � 0 in series and then
reformed a sum of sn �fn�s�, n � 1, 2, which means nth
order derivative of fn�t� with respect to time. There-

fore, the Shoji method gave the inverse solution as a
term of numerical derivative of the temperature change
measured at a point. The Shoji and the present
methods can be thought as basically identical except

that the numerical derivative was employed in place of
integration as shown in Eqs. (12) and (13).
Comparison of the present and the Shoji procedures

shows that (1) accuracy of the inverse solution pre-
dicted by using the temperature with an accuracy of 2
or 3 signi®cant digits can be improved by the present

one, (2) there is little di�erence in the minimum predic-
tive time, (3) the present method shows higher robust
for the deterioration of the accuracy of the measured

temperature since uncertainties included in numerical
derivative propagates with a successive iteration of
time.
Imber [6] also obtained the inverse solution using

the same procedure as the present one, except that a
polynomial function with time was adopted in place of
a function of a half polynomial series of time, as

shown in Eq. (10), to approximate the measured tem-
perature change and no consideration was given for a
time lag. Therefore, his method resulted in worse

inverse solution than the present one. This fact may
mean that a lower order of half polynomial series
plays an essential role in the region of a short time
and correctly approximates a functional form of sol-

ution, y � f �x= ���
t
p �:

7. Conclusions

1. The inverse solution for one-dimensional heat con-
duction is explicitly given using Laplace transform-

ation and a suitable functional form expressed by
half polynomial series of time to approximate

change of the measured temperature with time.
2. The approximate equation which takes into account

time lag gives the best inverse solution.

3. The explicit solution requires no iterative process
and then gives the surface condition of the tempera-
ture as well as heat ¯ux quickly.

4. The inverse solution obtained is robust against a
disturbance included in the temperature change.
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Appendix A

A.1. Expansion of integrant in a series

Expansion of integrants in Eqs. (12) and (13) around
s � 0 in a series

sinh�pxn �=sinh
�
p�x2 ÿ x1 �

	 �X1
i�0

ci, ns
i, n � 1, 2 �A1�

cosh�pxn �=sinh
�
p�x2 ÿ x1 �

	 �X1
i�0

di, ns
i, n � 1, 2 �A2�

where, n � 1, 2 give the position of the measurement at
x � x1 and x2:
The coe�cients of ci, n and di, n in Eqs. (A1) and

(A2) can be given as:

c0, n � xn=�x2 ÿ x1 �

ci, n � c0, n�x2 ÿ x1 � 2i
0@ 1

�2i� 1�!c
2i
0, n ÿ

Xiÿ1
j�0

A2�iÿj�
c 2j0, n
�2j� 1�!

1A,
ir1, n � 1,2

d0 � 1=�x2 ÿ x1 �

Table 3

Standard deviation for each example

Finite body Semi-in®nite body

N Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

3 0.0047 0.0091 0.0679 0.0085 0.0004 0.0655

4 0.0036 0.0093 0.0688 0.0052 0.0004 0.0652

5 0.0027 0.0093 0.0436 0.0024 0.0005 0.0405

6 0.0020 0.0093 0.0330 0.0026 0.0005 0.0335

7 0.0032 0.0094 0.0314 0.0072 0.0006 0.0307

8 0.0033 0.0094 0.0220 0.0197 0.0008 0.0221

9 0.0031 0.0095 0.0209 0.0169 0.0009 0.0213
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di, n � �x2 ÿ x1 � 2iÿ1
0@ 1

�2i�!c
2i
0, n ÿ

Xiÿ1
j�0

A2�iÿj�1�
c 2j0, n
�2j�!

1A,
ir1, n � 1, 2

where

A2 � 1

3!
, A4 � 1

5!
ÿ
�
1

3!

� 2

, A6 � 1

7!
ÿ 2

1

3!

1

5!

A8 � 1

9!
ÿ 2

1

3!

1

7!
ÿ
�
1

5!

� 2

�3 1

5!�3!� 2
ÿ
�
1

3!

�4

,

A10 � 1

11!
ÿ 2

�
1

3!

1

9!
� 1

5!

1

7!

�
� 3

 
1

3!�5!� 2
� 1

�3!�35!

!

ÿ 4
1

5!�3!�3
�
�
1

3!

�5

:

The same procedure for Eq. (16) gives expansion as:

e px1 �
X1
n�0

enp
n, en � xn1

n!
�A3�

A.2. Multiplication of coe�cients

The integrants in Eqs. (12) and (13) can be reformed
by using the coe�cients of bi, j, cl, j, and dl, j as:

XN
k�0

bk, 1=s

�
k
2�1

�
sinh�px2 �=sinh

�
p�x2 ÿ x1 �

	

�
XN
k�0

bk, 1=s

�
k

2
�1
�X1

i�0
ci, 2s

i �
XN
j�ÿ1

Cj, 12s

�
j
2�1

�

Cÿ1, 12 �
XNk

k�0
b2k�1, 1ck�1, 2, j � ÿ1,

Nk � Int
��Nÿ 1�=2	

Cj, 12 �
XNk

k�0
b2k�j, 1ck, 2, jr0,Nk � Int

��Nÿ j�=2	
As for Cÿ1,21, Cj,21 at other point, the values are sub-
ject to the subscripts.

XN
k�0

bk, 1=s

�
k
2�1

�
p cosh�px2 �=sinh

�
p�x2 ÿ x1 �

	

�
XN
j�ÿ1

Dj, 12s

�
j
2�1

�

Dÿ1, 12 �
XNk

k�0
b2k�1, 1dk�1, 2, j � ÿ1,

Nk � Int
��Nÿ 1�=2	

Dj, 12 �
XNk

k�0
b2k�j, 1dk, 2, jr0,Nk � Int

��Nÿ j�=2	
As for Dÿ1, 21, Dj, 21, the values are subject to the sub-
scripts.

The coe�cients of Ej and Gj in Eqs. (18) and (19)
are also given as:

XN
k�0

bk, 1=s

�
k
2�1

�
e px1 �

XN
k�0

bk, 1=s

�
k
2�1

�X1
i�0

eis
i=2

�
XNj

j�ÿ1
Ejs

�
j
2�1

�

Eÿ1 �
XNk

k�0
bk, 1ek�1, j � ÿ1,Nk � N

Ej �
XNk

k�0
bk�j, 1ek, jr0,Nk � Nÿ j

XN
k�0

bk, 1=s

�
k
2�1

�
p e px1 � p

XN
k�0

bk, 1=s

�
k
2�1

�X1
i�0

eis
i=2

�
XNj

j�ÿ1
Gjs

�
j
2�1

�

Gÿ1 �
XNk

k�0
bk, 1ek, j � ÿ1,Nk � N

Gj �
XNk

k�0
bk�j�1, 1ek, jr0,Nk � Nÿ jÿ 1
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